Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(15): 2613-2615, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541215

RESUMO

Here, Molecular Cell talks to first author Jianong Zhang and co-corresponding author Haojie Huang about their paper, ''A lncRNA from the FTO locus acts as a suppressor of the m6A writer complex and p53 tumor suppression signaling'' (in this issue of Molecular Cell) and their scientific journeys until now.


Assuntos
Transdução de Sinais
2.
Nat Commun ; 14(1): 4671, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537199

RESUMO

Whether TMPRSS2-ERG fusion and TP53 gene alteration coordinately promote prostate cancer (PCa) remains unclear. Here we demonstrate that TMPRSS2-ERG fusion and TP53 mutation / deletion co-occur in PCa patient specimens and this co-occurrence accelerates prostatic oncogenesis. p53 gain-of-function (GOF) mutants are now shown to bind to a unique DNA sequence in the CTNNB1 gene promoter and transactivate its expression. ERG and ß-Catenin co-occupy sites at pyrimidine synthesis gene (PSG) loci and promote PSG expression, pyrimidine synthesis and PCa growth. ß-Catenin inhibition by small molecule inhibitors or oligonucleotide-based PROTAC suppresses TMPRSS2-ERG- and p53 mutant-positive PCa cell growth in vitro and in mice. Our study identifies a gene transactivation function of GOF mutant p53 and reveals ß-Catenin as a transcriptional target gene of p53 GOF mutants and a driver and therapeutic target of TMPRSS2-ERG- and p53 GOF mutant-positive PCa.


Assuntos
Neoplasias da Próstata , Regulador Transcricional ERG , Proteína Supressora de Tumor p53 , Animais , Humanos , Masculino , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Mutação com Ganho de Função , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proto-Oncogenes , Pirimidinas/biossíntese , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Mol Cell ; 83(15): 2692-2708.e7, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37478845

RESUMO

N6-methyladenosine (m6A) of mRNAs modulated by the METTL3-METTL14-WTAP-RBM15 methyltransferase complex and m6A demethylases such as FTO play important roles in regulating mRNA stability, splicing, and translation. Here, we demonstrate that FTO-IT1 long noncoding RNA (lncRNA) was upregulated and positively correlated with poor survival of patients with wild-type p53-expressing prostate cancer (PCa). m6A RIP-seq analysis revealed that FTO-IT1 knockout increased mRNA m6A methylation of a subset of p53 transcriptional target genes (e.g., FAS, TP53INP1, and SESN2) and induced PCa cell cycle arrest and apoptosis. We further showed that FTO-IT1 directly binds RBM15 and inhibits RBM15 binding, m6A methylation, and stability of p53 target mRNAs. Therapeutic depletion of FTO-IT1 restored mRNA m6A level and expression of p53 target genes and inhibited PCa growth in mice. Our study identifies FTO-IT1 lncRNA as a bona fide suppressor of the m6A methyltransferase complex and p53 tumor suppression signaling and nominates FTO-IT1 as a potential therapeutic target of cancer.


Assuntos
Neoplasias , RNA Longo não Codificante , Masculino , Camundongos , Animais , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53/genética , Adenosina/metabolismo , RNA Mensageiro/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
4.
Cancer Res ; 83(6): 875-889, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36637424

RESUMO

Retinoblastoma (RB) protein can exert tumor suppressor functions even when it becomes phosphorylated. It is thus essential to understand how phosphorylated RB (p-RB) expression and function are regulated. Here, we demonstrated that RING finger domain protein TRIM28 bound and promoted ubiquitination and degradation of CDK4/6-phosphorylated RB protein. SETDB1, a known TRIM28 binding partner, protected p-RB from degradation through the binding of methylated RB by its Tudor domain independent of its methyltransferase activity. SETDB1 was found to be frequently overexpressed due to gene amplification and positively correlated with p-RB in prostate cancer patient specimens. Inhibition of SETDB1 expression using a gene-specific antisense oligonucleotide (ASO) reduced tumor growth but accelerated RB protein degradation, limiting the therapeutic efficacy. However, coadministration of the CDK4/6 inhibitor palbociclib blocked ASO-induced RB degradation and resulted in a much greater cancer-inhibitory effect than each inhibitor alone both in vitro and in vivo. This study identified CDK4/6-dependent, TRIM28-mediated proteasomal degradation as a mechanism of RB inactivation and reveals SETDB1 as a key inhibitor of this process. Our findings suggest that combined targeting of SETDB1 and CDK4/6 represents a viable approach for the treatment of cancers with SETDB1 gene amplification or overexpression. SIGNIFICANCE: The identification of a role for TRIM28 and SETDB1 in regulating CDK4/6-phosphorylated RB stability uncovers a combination strategy using CDK4/6 and SETDB1 inhibition to decrease RB degradation and inhibit cancer growth.


Assuntos
Neoplasias , Humanos , Masculino , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Fosforilação , Proteína do Retinoblastoma/genética
5.
Front Oncol ; 12: 911466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237339

RESUMO

Rationale: Fructose-1,6-bisphosphatase (FBP1) is a tumor suppressor and a key enzyme negatively regulating Warburg effect in cancer. However, regulation of FBP1 protein expression and its exact role in prostate cancer (PCa) is largely unclear. Phosphatase and tensin homolog (PTEN) is one of the most frequently deleted tumor suppressor genes in human PCa. However, the role of PTEN loss in aberrant Warburg effect in cancer remains poorly understood. Methods: Expression of PTEN and FBP1 was analyzed in several PCa cell lines and prostate tumor tissues in mice. Western blot (WB) and RT-PCR approaches were used to examine how PTEN regulates FBP1 expression. Co-immunoprecipitation (co-IP) and in vivo ubiquitination assays were used to define the regulatory mechanisms. A PCa xenograft model was employed to determine the impact of PTEN regulation of FBP1 on PCa growth in vivo. Result: We demonstrated that in a manner dependent of PI3K/AKT signal pathway PTEN regulated FBP1 expression in various PCa cell lines and tumors in mice. We confirmed that this regulation took place at the protein level and was mediated by SKP2 E3 ubiquitin ligase. Mechanistically, we showed that serine 271 phosphorylation of FBP1 by cyclin-dependent kinases (CDKs) was essential for SKP2-mediated degradation of FBP1 protein induced by PTEN loss. Most importantly, we further showed that loss of PTEN expression enhanced Warburg effect and PCa growth in mice in a manner dependent, at least partially on FBP1 protein degradation. Conclusions: Our results reveal a novel tumor-suppressive feature of PTEN in restraining FBP1 degradation and the Warburg effect. These results also suggest that prohibiting FBP1 protein degradation could be a viable therapeutic strategy for PTEN-deficient PCa.

6.
Proc Natl Acad Sci U S A ; 119(39): e2205509119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36129942

RESUMO

Androgen receptor (AR) messenger RNA (mRNA) alternative splicing variants (AR-Vs) are implicated in castration-resistant progression of prostate cancer (PCa), although the molecular mechanism underlying the genesis of AR-Vs remains poorly understood. The CDK12 gene is often deleted or mutated in PCa and CDK12 deficiency is known to cause homologous recombination repair gene alteration or BRCAness via alternative polyadenylation (APA). Here, we demonstrate that pharmacological inhibition or genetic inactivation of CDK12 induces AR gene intronic (intron 3) polyadenylation (IPA) usage, AR-V expression, and PCa cell resistance to the antiandrogen enzalutamide (ENZ). We further show that AR binds to the CCNK gene promoter and up-regulates CYCLIN K expression. In contrast, ENZ decreases AR occupancy at the CCNK gene promoter and suppresses CYCLIN K expression. Similar to the effect of the CDK12 inhibitor, CYCLIN K degrader or ENZ treatment promotes AR gene IPA usage, AR-V expression, and ENZ-resistant growth of PCa cells. Importantly, we show that targeting BRCAness induced by CYCLIN K down-regulation with the PARP inhibitor overcomes ENZ resistance. Our findings identify CYCLIN K down-regulation as a key driver of IPA usage, hormonal therapy-induced AR-V expression, and castration resistance in PCa. These results suggest that hormonal therapy-induced AR-V expression and therapy resistance are vulnerable to PARP inhibitor treatment.


Assuntos
Antineoplásicos , Ciclinas , Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Antagonistas de Androgênios/farmacologia , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Linhagem Celular Tumoral , Ciclinas/genética , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Íntrons , Masculino , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poliadenilação/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , RNA Mensageiro/genética , Receptores Androgênicos/genética
7.
Oncogene ; 40(49): 6692-6702, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34667275

RESUMO

Calcineurin is a calcium- and calmodulin-dependent serine/threonine protein phosphatase that connects the Ca2+-dependent signalling to multiple cellular responses. Calcineurin inhibitors (CNIs) have been widely used to suppress immune response in allograft patients. However, CNIs significantly increase cancer incidence in transplant recipients compared with the general population. Accumulating evidence suggests that CNIs may promote the malignant transformation of cancer cells in addition to its role in immunosuppression, but the underlying mechanisms remain poorly understood. Here, we show that calcineurin interacts with pyruvate dehydrogenase complex (PDC), a mitochondrial gatekeeper enzyme that connects two key metabolic pathways of cells, glycolysis and the tricarboxylic acid cycle. Mitochondrial-localized calcineurin dephosphorylates PDHA1 at Ser232, Ser293 and Ser300, and thus enhances PDC enzymatic activity, remodels cellular glycolysis and oxidative phosphorylation, and suppresses cancer cell proliferation. Hypoxia attenuates mitochondrial translocation of calcineurin to promote PDC inactivation. Moreover, CNIs promote metabolic remodelling and the Warburg effect by blocking calcineurin-mediated PDC activation in cancer cells. Our findings indicate that calcineurin is a critical regulator of mitochondrial metabolism and suggest that CNIs may promote tumorigenesis through inhibition of the calcineurin-PDC pathway.


Assuntos
Calcineurina/metabolismo , Glioblastoma/patologia , Glicólise , Fosforilação Oxidativa , Domínios e Motivos de Interação entre Proteínas , Piruvato Desidrogenase (Lipoamida)/metabolismo , Apoptose , Calcineurina/química , Calcineurina/genética , Inibidores de Calcineurina/farmacologia , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Fosforilação , Piruvato Desidrogenase (Lipoamida)/antagonistas & inibidores , Piruvato Desidrogenase (Lipoamida)/genética , Células Tumorais Cultivadas
8.
Nat Commun ; 12(1): 5716, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588438

RESUMO

Mutations in SPOP E3 ligase gene are reportedly associated with genome-wide DNA hypermethylation in prostate cancer (PCa) although the underlying mechanisms remain elusive. Here, we demonstrate that SPOP binds and promotes polyubiquitination and degradation of histone methyltransferase and DNMT interactor GLP. SPOP mutation induces stabilization of GLP and its partner protein G9a and aberrant upregulation of global DNA hypermethylation in cultured PCa cells and primary PCa specimens. Genome-wide DNA methylome analysis shows that a subset of tumor suppressor genes (TSGs) including FOXO3, GATA5, and NDRG1, are hypermethylated and downregulated in SPOP-mutated PCa cells. DNA methylation inhibitor 5-azacytidine effectively reverses expression of the TSGs examined, inhibits SPOP-mutated PCa cell growth in vitro and in mice, and enhances docetaxel anti-cancer efficacy. Our findings reveal the GLP/G9a-DNMT module as a mediator of DNA hypermethylation in SPOP-mutated PCa. They suggest that SPOP mutation could be a biomarker for effective treatment of PCa with DNA methylation inhibitor alone or in combination with taxane chemotherapeutics.


Assuntos
Metilação de DNA/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/genética , Neoplasias da Próstata/genética , Proteínas Repressoras/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor , Humanos , Masculino , Camundongos , Mutação , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell Death Dis ; 12(7): 634, 2021 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-34148062

RESUMO

Signal transducer and activator 5a (STAT5A) is a classical transcription factor that plays pivotal roles in various biological processes, including tumor initiation and progression. A fraction of STAT5A is localized in the mitochondria, but the biological functions of mitochondrial STAT5A remain obscure. Here, we show that STAT5A interacts with pyruvate dehydrogenase complex (PDC), a mitochondrial gatekeeper enzyme connecting two key metabolic pathways, glycolysis and the tricarboxylic acid cycle. Mitochondrial STAT5A disrupts PDC integrity, thereby inhibiting PDC activity and remodeling cellular glycolysis and oxidative phosphorylation. Mitochondrial translocation of STAT5A is increased under hypoxic conditions. This strengthens the Warburg effect in cancer cells and promotes in vitro cell growth under hypoxia and in vivo tumor growth. Our findings indicate distinct pro-oncogenic roles of STAT5A in energy metabolism, which is different from its classical function as a transcription factor.


Assuntos
Mitocôndrias/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias do Colo do Útero/enzimologia , Efeito Warburg em Oncologia , Trifosfato de Adenosina/metabolismo , Animais , Proliferação de Células , Feminino , Glicólise , Células HEK293 , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/genética , Mitocôndrias/patologia , Fosforilação Oxidativa , Consumo de Oxigênio , Fator de Transcrição STAT5/genética , Carga Tumoral , Hipóxia Tumoral , Microambiente Tumoral , Proteínas Supressoras de Tumor/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
10.
Cell Death Dis ; 9(5): 528, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29743530

RESUMO

Cytokinesis is the last step of cell division and is concluded by the abscission of the intercellular bridge that connects two daughter cells. The tight regulation of cytokinesis completion is essential because cytokinesis failure is associated with various human diseases. Here, we report that iASPP, a member of the apoptosis-stimulating proteins of p53 (ASPP) family, is required for proper cell division. iASPP depletion results in abnormal midbody structure and failed cytokinesis. We used protein affinity purification methods to identify the functional partners of iASPP. We found that iASPP associates with centrosomal protein of 55 kDa (CEP55), an important cytokinetic abscission regulator. Mechanically, iASPP acts as a PP1-targeting subunit to facilitate the interaction between PP1 and CEP55 and to remove PLK1-mediated Ser436 phosphorylation in CEP55 during late mitosis. The latter step is critical for the timely recruitment of CEP55 to the midbody. The present observations revealed a previously unrecognized function of iASPP in cytokinesis. This function, in turn, likely contributes to the roles of iASPP in tumor development and genetic diseases.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citocinese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas Repressoras/metabolismo , Células A549 , Proteínas de Ciclo Celular/genética , Células HCT116 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitose , Complexos Multiproteicos/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/genética , Fosforilação/genética , Proteína Fosfatase 1/genética , Proteínas Repressoras/genética
11.
Cell Metab ; 27(1): 151-166.e6, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29198988

RESUMO

Amino acids are known regulators of cellular signaling and physiology, but how they are sensed intracellularly is not fully understood. Herein, we report that each aminoacyl-tRNA synthetase (ARS) senses its cognate amino acid sufficiency through catalyzing the formation of lysine aminoacylation (K-AA) on its specific substrate proteins. At physiologic levels, amino acids promote ARSs bound to their substrates and form K-AAs on the ɛ-amine of lysines in their substrates by producing reactive aminoacyl adenylates. The K-AA marks can be removed by deacetylases, such as SIRT1 and SIRT3, employing the same mechanism as that involved in deacetylation. These dynamically regulated K-AAs transduce signals of their respective amino acids. Reversible leucylation on ras-related GTP-binding protein A/B regulates activity of the mammalian target of rapamycin complex 1. Glutaminylation on apoptosis signal-regulating kinase 1 suppresses apoptosis. We discovered non-canonical functions of ARSs and revealed systematic and functional amino acid sensing and signal transduction networks.


Assuntos
Aminoacilação , Espaço Intracelular/metabolismo , Lisina/metabolismo , Transdução de Sinais , Aminoacil-tRNA Sintetases/metabolismo , Apoptose , Biocatálise , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Especificidade por Substrato
12.
Mol Cell ; 60(4): 661-75, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26585387

RESUMO

Elucidating the tumorigenic mechanism of R-2-hydroxyglutarate (R-2HG) is critical for determining how NADP(+)-IDH mutations cause cancer. Here we report that R-2HG induces cancerous metabolism and apoptosis resistance through promoting hypersuccinylation. By competitive inhibition of the mitochondrial tricarboxylic acid cycle enzyme succinate dehydrogenase (SDH), R-2HG preferentially induced succinyl-CoA accumulation and hypersuccinylation in the mitochondria. IDH1 mutation-bearing glioma samples and cells were hypersuccinylated in the mitochondria. IDH1 mutation or SDH inactivation resulted in hypersuccinylation, causing respiration inhibition and inducing cancerous metabolism and mitochondrial depolarization. These mitochondrial dysfunctions induced BCL-2 accumulation at the mitochondrial membrane, leading to apoptosis resistance of hypersuccinylated cells. Relief of hypersuccinylation by overexpressing the desuccinylase SIRT5 or supplementing glycine rescued mitochondrial dysfunctions, reversed BCL-2 accumulation, and slowed the oncogenic growth of hypersuccinylated IDH1(R132C)-harboring HT1080 cells. Thus, R-2HG-induced hypersuccinylation contributes to the tumorigenicity of NADP(+)-IDH mutations, suggesting the potential of hypersuccinylation inhibition as an intervention for hypersuccinylation-related tumors.


Assuntos
Glutaratos/farmacologia , Isocitrato Desidrogenase/genética , Mitocôndrias/efeitos dos fármacos , Mutação , Neoplasias Experimentais/metabolismo , Ácido Succínico/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Mitocôndrias/metabolismo , Neoplasias Experimentais/genética , Succinato Desidrogenase/antagonistas & inibidores
13.
Biochem Biophys Res Commun ; 437(2): 325-30, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23831472

RESUMO

Continual high expression of cysteine proteases calpain I and II have been implicated in tumorigenicity; conversely, N-acetyl-leu-leunorleucinal (ALLN), which inhibits calpain I and II, should also influence tumor growth and carcinogenesis. To explore the role of ALLN against colon cancer and in promoting apoptosis, we used colon cancer HCT116 cell lines, p53 or Bax-deficient HCT116 cell lines. Cell viability and tumor growth decreased in a concentration-dependent manner when treated with 0-26µM ALLN. Treatment with ALLN induced apoptosis in HCT116 cell; however, flow cytometry showed that apoptosis significantly decreased in Bax-deficient HCT116 cell lines, but not in p53-deficient HCT116 cell lines. In addition, the ALLN-induced apoptosis response was through Bax translocation from cytosol to mitochondria. In this study we showed intraperitoneally injected ALLN to inhibit colon tumor formation in nude mice, and found ALLN to inhibit tumor growth in colon cancer cells, mainly through apoptosis that depends on translocation of Bax to a mitochondrial endogenous pathway; this implies a molecular mechanism for ALLN against human colon cancer. These results suggest that ALLN could become a novel agent for prevention of colon cancer.


Assuntos
Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Leupeptinas/farmacologia , Proteína X Associada a bcl-2/fisiologia , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...